
Southeastern European Regional Programming Contest 2022
December 10, 2022

A. AppendAppendAppend

Author: Daniel Posdărăscu
Solved by: 87/123

First to solve: KhNURE_MMXXII

We can consider each character of t at a time and compute the minimum length l of the answer, as well
as a pointer p to the current match in s (initially, l = p = 0).

When a new character c arrives, we look into the list of positions of c in s, and find the next occurence
greater than the current position greater than p (using binary search).

If that position exists, set p as that position.

If there is no next position, we increment l and set p as the first occurence of c in s.

Total complexity is O(|s|+ |t| log |s|).

1

Southeastern European Regional Programming Contest 2022
December 10, 2022

B. Birthday Cake

Author: Anonymous
Solved by: 9/33

First to solve: LNU Stallions

Let’s denote the position of the chocolate chips as blue points, and the positions of the strawberries as
red points. Then, the problem asks us to find a halfplane containing as many blue points as possible,
and none of the red points.

Let’s fix a given angle vector α, and consider cutting the region that is to the right of α. Imagine sliding
the cut as much as possible towards the left of α (trying to cut as much of the cake as possible). When
can we not cut anymore? Naturally, when we find the first blue point. This point is the extremal point
for the angle α+ π

2 .

However, it is not hard to see that an extremal point in any direction must lie on the convex hull. Let’s
build the convex hull of all red points. For reasons stated above, it makes sense to consider cuts that are
tangent to the convex hull.

We’ll go back and imagine sweeping radially, cutting tangentially to the convex hull of the red points
(with a rotating caliper). Let’s consider a blue point p. If p is inside the convex hull of the red points,
then it will never be part of any cut. Otherwise, p will contribute to the answer precisely for a sector of
angles in this sweeping procedure, given by the two tangents of p to the convex hull of the red points. See
the below image for more detail.

Once we find all the n sectors for each of the blue points, we reduce to the classical problem of maximum
intersections of n sectors in a circle, which we can solve with a sweep with +1 and −1 events. In order to
treat the collinearity cases, we should consider each sector as being open (more specifically, consider the
ending events before the starting events, for all angles). Angles should also be kept as vectors and sorted
using the cross product, to avoid precision issues.

Finding upper/lower tangents from a point to a polygon and checking if a point is inside a polygon can
easily be done in O(m).

The total complexity is O(n log n+ nm).

Note: Finding tangents to a convex polygon and checking if points are inside a convex polygon can also
be done in O(logm) using binary search, therefore O((n +m) log(n +m)) is also possible. However, we
decided not to require this harder version in the contest. We leave it as an exercise for the experienced
World Finals aspirers.

2

Southeastern European Regional Programming Contest 2022
December 10, 2022

C. COVID
Author: Lucian Bicsi

Solved by: 6/15
First to solve: UoB R-Shuf

Let’s use the tip given in the statement and compute for person i the number of invalid scenarios where
that person is positive.

Naturally, this depends on the subset of tests where person i did not take part (the tests where person i
takes part are automatically valid).

We use inclusion-exclusion to count the answer. For a given set of tests T , the number of subsets in which
all tests t ∈ T are invalid is 2n−1−sz(T), where sz(T) is the number of people in at least one of the sets (any
people that belong to at least one of the sets must be healthy, person i must be sick, and all other people
may be in each of the two states). We will pre-compute sz(T) for all possible subsets T in complexity
O(2mn)

The true answer for a given person i is then a sum of numbers of form 2n−1−s. We can count the
contribution of each subset T in a frequency array in complexity O(2m), and then convert these arrays to
binary bignums (boolean arrays) of at most n bits, using a simple left-to-right pass (carry propagation)
at the end.

Afterwards, sort decreasingly by comparing with usual lexicographic comparator.

Total complexity is O(2mn+ n2 log n).

Note that solutions using floating point arithmetic require far too big precision (O(n) bits) to be able to
correctly sort the people.

3

Southeastern European Regional Programming Contest 2022
December 10, 2022

D. Divisible by 4 Spanning Tree

Author: Anton Trygub
Solved by: 0/2

First to solve: N/A

Note that the number of nodes with an odd degree is always even.

First, find any spanning tree. If the number of nodes with an odd degree in it is divisible by 4, return
YES. Otherwise, we have to determine whether it’s possible to "switch"this number mod4.

First, find all bridges; they will be in any spanning tree. Consider any biconnected component. We have
to determine if it’s possible to "switch"the number of nodes with an odd degree (mod4) separately for
each of them.

First, consider any cycle v1, v2, . . . , vk. Let’s choose all except k − 1 edges of the spanning tree, such
that all vi are in different components. Now, we have a choice: we have to choose all edges except some
particular edge. It follows that if for some i, parities of degrees of nodes vi−1 and vi+1 are different, then
we can "switch"in this cycle (by excluding edge (vi−1, vi) or (vi, vi+1)).

Now, consider any biconnected component. If it’s just one cycle, then just check the condition above.
Otherwise, it has to contain two simple cycles that have common nodes. It’s easy to see that it has to
contain two simple cycles such that the common nodes in them form a segment in both of them.

If the intersection is just one node, say v, then note that in the first cycle, by excluding the appropriate
edge, we can change the parity of degree of v. So, we would make the condition not hold for the second
cycle.

Now, the intersection is at least of 2 nodes. In fact, this looks as follows: we have some two different
nodes, u and v, and three disjoint paths between them. If the length of at least one of these paths is
at least 3, then, by excluding the appropriate edge in this path, we can vary the parity of degree of u
without changing the parity of degrees of other nodes in the remaining two paths, so we would be able to
"switch"here.

We are left with two cases: lengths are (2, 2, 2), or (1, 2, 2). We can chow that we can "switch"in lengths
(1, 2, 2). Otherwise, we get that if two cycles intersect (by their common segment), then the corresponding
lengths are 2, 2, 2; it’s easy to show that the entire component is just a graph on 5 nodes then, with edges
(1, 2), (1, 3), (1, 4), (2, 5), (3, 5), (4, 5)). In this component, we can show that we won’t be able to switch
the parity only if the parities of degrees of 2, 3, 4 are all equal and of 1, 5 are opposite.

Then the entire algorithm would be to find all biconnected components and check whether each of them
is a cycle in which nodes at a distance 2 have the same parity of degree or a particular graph on 5 nodes
and 6 edges with some conditions on parities of degrees.

Final complexity is O(n+m).

4

Southeastern European Regional Programming Contest 2022
December 10, 2022

E. Exercise
Author: Anton Trygub

Solved by: 38/68
First to solve: Infinity

Let’s sort the students so that c1 ≤ c2 ≤ . . . ≤ c2n, and remember which n pairs are prohibited.

If we had no prohibited pairs, the optimal solution would be just to form pairs
(c1, c2), (c3, c4), . . . , (c2n−1, c2n).

Now, consider any optimal solution. If there are several optimal solutions, consider the one in which the
sum of (x− y)2 over pairs (cx, cy) is minimized.

Now, suppose that we have some pairs (cx, cy) and (cz, ct) for some x < y, z < t. Then:

• x < z < t < y is impossible.

Proof: This means that we can’t form pairs (cx, cz), (ct, cy) and (cx, ct), (cz, cy). This is impossible.
For example, if pair (cx, cz) is banned, then both pairs (cx, ct), (cz, cy) aren’t banned.

• If (cx, cy) is a pair, then |y − x| ≤ 3.

Proof: Wlog x < y. Consider any cz for z ∈ [x+ 1, y − 1]. It forms a pair with some ct, where t is
outside of this range. If t < x, then one of pairs (ct, cx), (cz, cy) must be banned, else one of pairs
(cx, cz), (cy, ct) must be banned.

It follows that there are at least y − x − 1 banned pairs for cx and cy in total, but there are, of
course, only 2 such pairs, q.e.d.

So, there is an optimal solution in which all pairs are at a distance at most 3. Then there is the following
solution: go from left to right, and keep dp: what’s the smallest possible sum of differences in the given
prefix, if we paired all elements except certain mask among the last 3 elements. Updating this dp is easy:
consider new element, and pair it with someone unpaired in the previous 3 elements, or mark it as yet
unpaired.

The final complexity is O(n).

5

Southeastern European Regional Programming Contest 2022
December 10, 2022

F. Fortune over Sportsmanship

Author: Daniel Posdărăscu
Solved by: 46/53

First to solve: Giocanul

It turns out that the solution equals exactly the maximum spanning tree of the complete graph where
we add edges (i, j) of weight Pi,j for all 1 ≤ i < j ≤ n.
First, for any candidate tournament, the pairs (i, j) that describe the popularity Pi,j of each of the n
matches should form a tree. This can be seen inductively, as each new match (a, b) yields some Pi,j where
i is one of the contestants that were (directly or indirectly) beaten by the first player a, and j is one of
the contestants that were (directly or indirectly) beaten by the second player b. Then, the virtual edge
(i, j) would have to connect different connected components in the imagined complete graph.

This proves that the pairs (i, j) form a tree; now all it remains is to show that we can construct the “best”
tree (the MST). This can be proven by construction: run Kruskal’s algorithm, and for each tree edge (i, j)
output a match between the players (a, b), where a is the minimum index in the connected component in
which i resides, and b is the minimum index in the component where j resides.

Another, more intuitive way to view this transformation, is by first noticing that the fact that the smallest
indexed player wins in a match between i and j is not important; one could think of a “superplayer” which
encompasses both i and j, and replace both of them with this “superplayer”. This immediately shows that,
even though one of i and j would lose, their popularity can be re-used nonetheless for other matches (if
it’s profitable). Therefore, any configuration where the matches form a tree can be achieved via either the
original players, or some “superplayers” that come from one or more matches where the original players
took place.

Final complexity is O(n2 log n).

Note: The problem can also be solved in O(n2) by using Prim’s MST algorithm. However, this was not
required to solve the problem.

6

Southeastern European Regional Programming Contest 2022
December 10, 2022

G. Gears
Author: Lucian Bicsi

Solved by: 35/63
First to solve: UoB R-Shuf

The key observation to solving this problem is noticing that, once we place the first gear, the others are
uniquely determined. This gives us a rather straightforward O(n2) solution, which we need to further
optimize to fit for the big constraints.

Let r1 = X be the radius of the first gear in the correct placement. Then, the radius of the
second gear is r2 = (x2 − x1) − r1 = (x2 − x1) − X. Further, the radius of the third gear is
r3 = (x3 − x2)− r2 = (x3 − x2)− (x2 − x1) +X.

The important thing to note is that we can express all other n − 1 radii as either X + ai or ai − X
(depending on the parity of i) for some ai. How to compute the terms ai is left as an exercise for the
reader.

Notice that the gear with the minimum radius must be placed either on the position with the minimum
of all odd ai’s or the minimum of all even ai’s. Either case deduces the value of X and, consequently, of
all radii. So try both, and simply check which case outputs a correct solution.

Complexity is O(n) or O(n log n), depending on how you implement the checker.

Note: Solutions based on hashing are also possible.

7

Southeastern European Regional Programming Contest 2022
December 10, 2022

H. Hanoi
Author: Alexandru Lungu

Solved by: 72/88
First to solve: Infinity

There are many techniques which lead to at most 2 · n2 moves. We will present only one of them:

Consider we already have placed the top-most p− 1 disks from the first rod to the third rod and we are
going to move the p-th disk now. First move, this p-th disk on the auxiliary rod (the second rod). As long
as we can’t move this p-th disk on the third rod, move disks from the third rod on the first, as there,
the order doesn’t matter anyways. Move the p-th disk on the third rod and revert back the disks moved
to the first rod in the last step. At the end of this process, the top-most p disks from the first rod are
correctly placed on the third rod. This process takes at most 2 + 2 · (p− 1) moves.

Repeating the previous process for all disks, solves the problem. The total number of moves is n · (n+ 1)
which is always less than 2 · n2 for any 1 ≤ n.

8

Southeastern European Regional Programming Contest 2022
December 10, 2022

I. Inadequate Operation

Author: Anton Trygub
Solved by: 15/43

First to solve: UzhNU_OLDS

Let’s call an operation k-operation, if max(ai, ai+1) in it is k.

Consider any k > 0. Consider all elements which are ≥ k; they form some consecutive segments of lengths,
say, l1, l2, . . . , lt.

Claim: We have to perform at least d l12 e+ d
l2
2 e+ . . .+ d lt2 e k-operations.

Proof: Each element can decrease at most by 1 in an operation, so every element ≥ k will have to be
involved in at least one k-operation, q.e.d..

It turns out that making exactly this number of k-operations for every k is achievable. Let M be the
largest number. Consider any segment of consecutive Ms; let it have length l.

If l ≥ 2, then we can trivially make all the elements in this segment equal to M − 1 in d l2e queries.
If l = 1, consider its neighbors. If it has only one neighbor, so, wlog, a1 =M , then just make an operation
with a1, a2. Note that while a2 might increase, the number of required k-operations for all k < M will
remain the same (as for k ≤ a2 nothing changes, and for k > a2 a1 was forming a separate segment
anyways, so we might as well make a2 equal to M − 1, and make a segment [a1, a2] instead).

Now suppose that ai = M with 2 ≤ i ≤ n − 1. Wlog ai−1 ≤ ai+1 < M . Then make an operation with
(ai, ai+1). The argument is the same: for k ≤ ai+1 nothing changes, and for k > ai+1 ai was forming a
separate segment anyways, so we might as well make ai+1 equal to M − 1, and make a segment [ai, ai+1]
instead.

How to find these values for all k? Well, just go over numbers from large to small, and keep track of
consecutive segments (the easiest way to do so is using doubly-linked lists). Every time you merge two
segments, recalculate the sum. The answers for k1 and k2 are the same if there is no ai in [k1, k2), and here
are O(n) distinct values in the array, so we can calculate all the places where the number of k-operations
changes (and by how much) in O(n log n) (from sorting).

Note: The sorting can be completely removed, yielding a simpler O(n) solution using a doubly-linked list
and a queue. However, this was not required to solve the problem.

9

Southeastern European Regional Programming Contest 2022
December 10, 2022

J. Joyful Death

Author: Daniel Posdărăscu
Solved by: 5/9

First to solve: Infinity

Solving just one instance of the problem is a rather straightforward problem, and can be done by the
sweep line technique, using a priority queue to choose the best available dish at all times. However, it is
hard to optimize straight-away to handle incrementally considering each elf. Nonetheless, we will see that
this algorithm is crucial to build intuition for the harder problem.

Let’s look at the naive algorithm in more detail. More specifically, let’s consider how the algorithm operates
for a set S of elves, and then imagine that one of the elves x ∈ S is removed. It is not hard to prove
that the dishes that would be chosen by running the algorithm without some elf S \ {x} would always be
a subset of the dishes chosen by the algorithm with all elves S. Therefore, it is correct to assume that,
whenever the new elf arrives, all the already assigned dishes would still be assigned (possibly to different
elves), and at most one extra dish will be chosen.

Note: The above observation is, in fact, valid for all instances of bipartite weighted matching, and it is a
key observation of the incremental Hungarian Algorithm implementation.

However, one problem still remains: how to choose the best new dish? Intuitively, to answer this question,
we have to analyze which new dishes are valid to be picked given the new elf (after possible re-assignments),
and, thereafter, which sets of dishes are valid.

Let’s go back to the algorithm and consider k elves and k dishes. In order for the assignment to be feasible,
each of the k elves must have at least one dish in the queue when they get processed in the algorithm.
Therefore, if we think of dishes as open brackets “(” and elves as closing brackets “)”, then the sequence
of opening and closing brackets must be balanced (in essence, for each prefix there must be at least as
many open brackets – dishes – as closed ones – elves).

Note: One may invoke Hall’s Marriage Theorem and arrive to the same fact.

Thinking of the process in terms of brackets simplifies the work by a lot. Each new elf corresponds to a
closed bracket, and at each step we should find the best open bracket to add to the sequence to keep it
balanced. Note that if the open bracket comes before the closed one, it will always be valid. This is also
backed by intuition: we can always assign a dish to the current elf, and keep the other reassignments.

Interestingly, however, some open brackets that come after the current closed one are also valid. In essence,
the valid open brackets form a prefix; this prefix ends at the smallest spot where there are just as many
open brackets as closed, greater than the spot of the current closed bracket. The details of why this is
true is left as an exercise to the reader.

In terms of implementation, finding out this prefix can be solved by binary searching the first zero prefix
sum after a given position where we add +1 for each open bracket and −1 for each closed one, using a
segment tree. Finding and removing the best non-chosen open bracket in that prefix is, again, a standard
segment tree query. Extra care should be taken for when there is no such open bracket (dish) to assign,
where no updates happen.

Final complexity is O((n+m) log(n+m)).

Note: O(n log2 n) or O(n
√
n) solutions may also pass, if implemented carefully.

10

Southeastern European Regional Programming Contest 2022
December 10, 2022

K. Knowledge Testing Problem

Author: Lucian Bicsi
Daniel Posdărăscu

Solved by: 2/7
First to solve: Echipa Sarata

Let d(= 10) be the maximum distance between vertices allowed.

First relax the graph such that each shortest walk doesn’t have any "u-turns". You should obtain that
with two passes (one forward one backward), and some Roy-Floyd-like approach:
for i in 1..N:

for j in i+1..i+D:
for k in i+1..i+D:

dist[j][k] = min(dist[j][k], dist[i][j] + dist[i][k])

Note: the above is just the forward pass

This essentially lets us view the graph as being directed (all edges be arcs from left to right).

Let’s group the n nodes of this graph into blocks of size d, and build a segment tree, where each node in
the tree stores a d × d matrix Mi,j = dist(l + i, r + j). The complexity of building such segment tree is
O(n/d · d3) = O(nd2).

We solve a query (u, v) in such a segment tree in O(d2 log n), as follows:

Consider an array ans where ans[i] is the minimum distance to vertex number i in some block of size d.
Initially, we set ans[u%d] = 0, and for the other values, ans[i] =∞.

For each of the 2 log n nodes visited by a query inside the segment tree, we update the ans array using
the following procedure:
for i in 0..D-1:

ans ’[i] = INF

for i in 0..D-1:
for j in 0..D-1:

ans ’[j] = min(ans ’[j], M[i][j] + ans[i])

It is not hard to see that the new answer ans′ contains the required distances to each of the new d vertices.

Total complexity is O(nd2 + qd2 log n).

Note: The segment tree build and the query can be seen as tropical matrix-matrix and matrix-
vector multiplication. Alternative solutions using Divide and Conquer are also possible. Solutions of
complexity O(nd2 log n) (using Dijkstra instead of Roy-Floyd-like relaxation) can also pass, given a careful
implementation.

11

Southeastern European Regional Programming Contest 2022
December 10, 2022

L. Level Up

Author: Alexandru Lungu
Solved by: 0/0

First to solve: N/A

There are some preliminary observations:

• In the i-th realm, the character can achieve between 1 and ki level ups.

• In order to achieve j levels in the i-th realm, the character should choose to engage exactly the
weakest j mobs from the i-th realm.

• It is optimal to kill the most powerful engaged mob in each turn.

• Engaging j mobs in the i-th realm damages the character di,j hit points. Considering that psi,j is
the partial sum of the mob strengths in the i-th realm, di,j =

∑j
k=1 psi,k.

• When already at level m it is ideal to engage only the weakest mob.

This basically means that in each realm i we can choose to level up j times (1 ≤ j ≤ ki) at the cost of
di,j .

For determining the lowest starting HP, we can apply dynamic programming. Let dpi,j be the
lowest HP required if the character just reached realm i and has level j. The recurrence is
dpi,j = min

min(j+ki,m)
k=j+1 (max(1, dpi+1,k−hk)+di,k−j). Specially handle the case where j = m. The build-up

should be done bottom-up and the answer is found in dp1,1
Using this dynamic programming right away results into a O(n · m2) solution. To reduce this, notice
that the optimal k for computing dpi,j is non-decreasing. Therefore, we can use Divide and Conquer
optimization to achieve a better complexity.

Final complexity is O(nm logm).

Note: Better complexity O(nm) can be achieved using a technique similar to Convex Hull Trick, but it
wasn’t required for this problem.

12

Southeastern European Regional Programming Contest 2022
December 10, 2022

M. Mousetrap

Author: Lucian Bicsi
Solved by: 3/15

First to solve: SuteAlbastre

First, let’s denote the path from 1 to n in the tree as 1 = v0, v1, v2, . . . , vk−1, vk = n. It is easy to see that
it makes sense to add cheese only on chambers v1, v2, . . . , vk.

We can express the probability of exiting the network as a product P =
∏k
i=1

ai
bi
, where 1 ≤ ai ≤ bi ≤ 109

can be computed from the input. We leave the implementation details for computing these values as an
exercise to the reader.

Let’s analyze what happens when one adds a piece of cheese to some chamber vi. It turns out that the
probability becomes P ′ = P · biai ·

ai+1
bi+1 . Furthermore, note that adding more cheese yields an increasingly

smaller benefit to the answer (a “diminishing returns” scenario); in other words, all k “benefit” functions
are concave.

This means that we can deduce a correct Õ(x) algorithm: using a priority queue, add cheese to the
chamber with the biggest gain gi = bi

ai
· ai+1
bi+1 . However, this is too slow for this problem’s constraint on x.

One way to optimize is to start with a “close enough” solution. One good candidate is the solution for the
fractional problem, where one drops the constraint that the added cheese should be integer, and optimizes
instead the log-product:

max
k∑
i=1

(log(ai + x)− log(bi + x))

s.t. xi ≥ 0
k∑
i=1

xi = x

by binary searching on the derivative δ = d
dx(log(ai + x) − log(bi + x)) (up to some precision ε). For a

given derivative δ, the cheese added to each chamber can be computed by solving a quadratic equation.

One can prove that the solution for the fractional problem is O(n) away from the integer solution, therefore
the adjustment from the floating point solution to the integer solution can be done in O(n log n) using
the above-described priority-queue method.

Comparing fractions using 128-bit integers yields a solution that suffers from no precision issues; however,
using long doubles might also work.

Final complexity is O(n log n+ n log ε−1).

13

Southeastern European Regional Programming Contest 2022
December 10, 2022

N. Nusret Gökçe

Author: Daniel Posdărăscu
Solved by: 110/121

First to solve: CodeBusters

The constraints |si − si+1| ≤ m get split into two types of constraints:

1. si+1 ≥ si −m (1 ≤ i ≤ n− 1)

2. si−1 ≥ si −m (2 ≤ i ≤ n)
We can solve all the constraints of the first type in a simple forward (left-to-right) pass, setting
si+1 = max{si+1, si −m}. Similarly, we can solve all the constraints of the second type in a backward
(right-to-left) pass, setting si−1 = max{si−1, si −m}.
One can easily see that each decision is “forced”. Moreover, the backward pass will never introduce extra
constraints of type 1, therefore the solution is valid.

One may also alternatively view this problem as a “system of difference constraints”, and the two-pass
approach yields the same result as applying the Bellman-Ford algorithm on the line graph with undirected
edges (i, i+1) of cost m (as each relaxation can go along a left-to-right path or along a right-to-left path).

Total complexity is O(n).

Note: Alternatively, one may observe that the maximum value in s will never change. Therefore, one may
propagate the constraints given by the maximum value left and right, erase it, and repeat. By using a
priority queue to simulate the process, one can achieve O(n log n) complexity.

14

